
GENERAL METHOD OF INTEGRAL RELATIONS

AND ITS APPLICATION TO BOUNDARY LAYER


THEORY

By A. A. DORODNITSYN


Moscow 1960


1. INTRODUCTION

IN the solution of equations containing partial derivatives, there has re-
cently been widespread development of approximation methods for con-
verting partial differential equations into systems of ordinary differential
equations. These methods give greater accuracy compared with the method
of finite differences and permit the use of very well developed numerical
methods of solution of ordinary differential equations.

At the same time these methods are extremely suitable for application
to electronic calculating machines: they are usually "stored" as standard
sub-routines and so do not load the memory of the machine, as do for
example all the various methods which use successive approximations or
iterations.

Of the methods for reducing partial differential equations to systems
of ordinary differential equations, the best developed are the "direct"
method and the method of "integral relations". In the direct method
the partial derivative with respect to one of the variables (for simplicity,
we will consider partial differential equations with two independent vari-
ables only) is substituted by a finite difference relation which is based
on certain interpolation formulae, expressing the value of the function
at any point, in terms of the value of the function at the boundaries of
the strips into which the interval is divided.

In the method of integral relations the initial differential equation con-
taining partial derivatives is integrated first across the strips, whence
the partial derivatives with respect to one variable are eliminated. After
this, it is not the derivatives but the integrals of unknown functions which
are represented with the help of interpolation formulae.

As experience has shown in the solution of numerous concrete problems
in mechanics and physics, the method of inte2ral relations permits the
attainment of completely satisfactory accuracy even when the whole re2ion,
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within which the solution is sought, is only divided into a very small number

of strips. Often this accuracy is quite astonishing. For example, in a series

of problems in gas dynamics, the division of the interval into two strips
gives a solution correct to 1 per cent.

It is difficult to 2ive a strict theoretical explanation of this unusually
hiah accuracy, since the interpolation formulae both for integrals and
for derivatives are capable of a similar order of accuracy, according to

the width of the strip. The fact is that in practical calculations, use is never
made of a very large number of strips, for which case the error would ap-

proach zero. On the other hand, the mathematician, in practice, always
chooses that method which would give satisfactory accuracy for a compara-
tively wide strip. For a small number of interpolation points the accuracy of

the approximate representation of the integral can be essentially higher
than the approximate representation of the derivative. It is obvious that

it is not difficult to reduce the primary functions, when the approximate re-
presentation of the integral is more exact than the approximate representation

of the derivative, and vice versa; but it seems that the physically real quan-
tities possess a known degree of continuity, Whilst the continuity of the
derivatives of these quantities does not depend on their physical character.

From this it follows that the integral of a physical quantity is represented,
ith the help of interpolation formulae, considerably more accurately

than its derivative, for a small number of interpolation points.
Below we will see that the method of "direct" and the method of "integral"

relations differ in their degree of "smoothing" of the function. In the

smoothing process, details of the behaviour of the function become less

essential, and the greater the dearee of smoothina, the more rouahly can

the function be represented, in order to derive from it its "smoothed"
value with satisfactory accuracy.

2. GENER AL INTEGRAL RELATIONS

We will look at a system of differential equations with partial deriva-
tives of the following type

-0 P-(x, 1.;  u,. u., u ) '  Q.(x, y-  u„u„ u ) = F;(x,  y;  u„ u„)ox — n y s n

(2.1)
i  1, 2, ...,  n

where  u, u,, ...,n„  are unknown functions, Pi, Qi, Fi  are given functions
of their arguments.

It is necessary to find the solution of this: system within the limits

a x<b; c< y<d. ("a" can tend to — a),  "b" to ± oo).  Let us mul-
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tiply equation (2.1) by a certain function  f(y)  and integrate it with respect

to "y" over the interval (from  "c"  to "d"). We will obtain:

d •

-d-A7
f(.1) P dy±f(d)Qi[x,d; , (1), , un(x, d)]

—f(c)Q,[x , c; u1(x , c), u(x , f f ' (y) Q dy =

— f(J)Fi  dY

Equation (2.2) is the starting relation in the "general method of inteeral
relations".

This relation can easily be eeneralized for the case where the boundary

of the interval is not linear. For example, let the upper limit be curvilinear:

y = 6(x) (2.3)

then in place of the relationship (2.2), we obtain

a

-d- dY  (6) P1[A 6; u1(x (5), u„(. v, 6)] +

, u1(x, u„(x,  15)1—

c;  u,(x, c)]— f f'(y)(21  dy =

I= f(y) F dy (2.4)

f .f(y) is discontinuous, the integral  ff(y) O dy  must be considered

as .1. Q, df(y)).

3. THE CONCEPT OF THE GENERAL METHOD OF INTEGRAL

RELATIONS

Let us choose now a system of groups of the functions  f(y).

• • • ,fii.kb • • ) (3-1)

that is a system of groups of functions, such that, in the Kt' group are

contained  K  mutually independent functions (but in the different groups

(2.2)
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the functions can coincide). We will now divide our rectangular region
into K strips and we will set up the functions pi, Qi, Fi with the help of
a certain interpolated expression involving their values at the boundaries
of the strip

v=K

P i[- y; u1(x un(x 3)]-= Pfk-F v(.1')
v=o

and similarly for Q. and Fi.

Here P i(x) has the value Pi at the upper limit of the yth strip.

Piv = Pi(x,yv;u1 112, V • • • , tin, v)

1,11, v  = 141(x v), • • • •

We will then derive the integral relations (2.2) or (2.3) for each of the
functions of the 10 strip. After substituting in these relations the inter-
polated expressions (3.2) and completing the integration (either exactly
or approximately) the integral relations lead to a system of ordinary dif-
ferential equations relating to the unknown functions ui, v. The number
of these equations is n.K, the number of unknown functions is n(K-L1),

(since V increases the value from 0 to "K"). The boundary conditions,
of w hich there are probably, in the general case, n at both boundaries
y = c and y =  d, provide the remaining equations. In the case when
the upper boundary y =  6(x) is unknown, one unknown is added, but
again probably there is one more additional boundary condition.

Let us look at some individual cases.
If Dirac's 6-functions are used as the functions of the Kt" group,

fk,o =

then we obtain the direct method, in which the derivative 'Ty'is obtained

by differentiating the interpolated expression (3.2).

By using for the value of f„,„ the graded functions

0 for Y <

fK, v — 1 for y„_, < y < y„


0 for y > y„

we obtain the usual method of integral relations. Now we see exactly
the meaning of the remark on the "smoothing" of the functions which
was made in the introduction. In the direct method, smoothing is achieved
with the help of the extremely "discontinuous" 6-functions of Dirac.
In the method of integral relations the smoothing process has already
occurred with the help of much more continuous functions. It can be
expected that the use of still more continuous smoothing functions would
enable good results to be obtained even for a small number of strips "K".

(3.2)
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In the following we will call the Ks" approximation the solutions of
the system of ordinary differential equations, obtained by dividing the
interval into  "K"  strips.

In the application to boundary layer equations, in place of the func-
tional groups we will use a power of a non-dimensional velocity term thus

.fK, 
V

where "u" is the tangential velocity inside the boundary layer, and V the

velocity at the outer limit of the layer. Here, it is obvious that it is first

necessary to transform the boundary layer equations so that the non-

u .
dimensional velocity - – onc of the independent variables.

V
We will examine below a boundary layer calculation problem in an

incompressible fluid. For a compressible gas, the method remains the
same, in principle, but the formulae are much more complicated in form.

4. TRANSFORMATION OF BOUNDARY LAYER EQUATIONS

We will first convert the initial system of boundary layer equations

Ou ôu
u

OA:
1

ay
VV v 	 (a) 1.ôy-

(b) (4.1) Oy
u = v = 0 at y = 0; u = V(x)  at y CO (e)

to the "standard" boundary conditions and the "standard' type of
singularity at the beginning of the boundary layer.

For this we will use new unknown functions

ii = iii V, v = viV  I v (4.2)
and new independent variables

x Y

	

= i V dx, ?)= 	
1  r Vy 


V dy — (4.3)

Then elementary transformation of the system (4.1) gives the following
equation:

(_ _)at-7
- v+-ou  v (1 u )

(3? r

o (_ _
-}-  -- r = 0

V

(4.4)

(Here V=
dV
d$ V

1 )

14'
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Substituting the symbol

J./
7111

V
(4.5)

we can write equations (4.4) in a simpler form

	

_ Or/ (Vi 12" AT/
— ( 1

V
ii2)

all 


 — o
a,)

The boundary conditions take the form:

	

= w = 0 at 7) = 0, 17=1  at j =o'D (4.7)

In such a form we see that the boundary conditions are standardized.

We will now examine how the solution is obtained at the beginning of

the boundary layer.

It is known that when the expansion of  V  commences with cxm, then
the expansion of the function 17in a series begins with the term

T./ = fo (.3,1x12m

	

Thence, changing to co-oridinates and we obtain

	

x m +1 , _ 	

	

/11+1 v

that is
1 


.1)m -1 _1
m ]-1

	

Y const 9) {

1—m

y/x 2 const •

Therefore

	

(const •  = _
I

for any exponent powers in.

It is found that the singularity at the beginning of the boundary layer

is "standardized" in this way.

For all exact solutions of the type  V = cxm  the solution of the system

(4.6) is always found by the substitution

(4.8)

(4.6)

X
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whence for the functions the ordinary differential equation is derived

2nt
(4.9)(P"' 94" = 0 


171 1

(in = 9A0) = O, T.'(C>0) =

We will observe that for exact solutions, the frictional stress at the wall

(r„) is expressed by the formula

- TAO)-

	

T. ev2 • ev-v v • (4.10)
a,) 04:

In the following section, for simplicity of nomenclature, we will not put

a line over  u,  that is, by  "u"  we will mean the non-dimensional velocity.


5. INTEGRAL RELATIONS

The following relationship is similar to Kármán's integral condition
for the system

(N) •

	

1

, au
u(1  — u) (17) V /* — u2)  co/ =

	

cl.; . V
o0

which is obtained by subtracting equation (4.6a) from equation (4.6b)

multiplied by (l  —u)  and afterwards integrating the difference obtained
with respect to // from 0 to ga.

We now obtain for the system (4.6) the integral relations of any order,

in a similar manner to that which is usually done for a non-transformed
system (4.1). For this, we multiply the equation (4.6b) by an arbitrary

function  f (u),  such that it converges sufficiently quickly to zero at
(for example, 1—u), and the equation (4.6a) by  f'(u)  and adding we would

then obtain

a a J2- a2u
uf(u)H---0,1 wf(u) = v f ' (u) (1 u2)+ f '(u) a  (5.2)

Having now integrated this expansion with respect to uj from zero to
infinity, we obtain

(,) . . N,
d  V au
d.,  If uflu) dui-=--- -17 r f ' (u) (1— u2) dui — f  ' (0) ' - (u)(-7---u)2dui

o 6. 	 n=0 o
on

(5.3)

Substitute by O the quantity

0 = au
1

(5.1)

(5.4)
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Then the integral relation (5.3) can be written in the form

d (0) f "(u)
Ou f(u) du — 0 f'(u) (1 u2) du

f
00 — 0 du (5.5)

V
o6

In particular, equation (5.1), for which f(u)= 1—u becomes

,1
1 


-d f Ou(1—u)du  V 0(1—u2)du —
V0,

(5.6)

//( 

(Here 00 =

/

6. WORKED EXAMPLE

We now represent the functions 0 and —1 in the Kt° aproximation
0

by the following expressions

0 =  1-1
u (a0-1-a1 a+ 4 ak

-1- = (1—u)(b0d-biu4- • • • --Fbk_luk 1)

0

In place of the system of functions A, as has already been said above,
we use the power system

(1 —u)'

The coefficients a, a„ . , b0, b„ . .. are found from the condition that
V 1

for u=u,.—  x . the functions 0 and -6 would equal their exact values.

This leads to the following systems:

1. The system to a first appro.vimation

Approximate expressions are:

= 	
1—u '

Differential equations are:

6 2 3  1.70 =
0 oV ° 


(The dot signifies differentiation with respect to 3)

(6.1)

1 1
0 0,(1—u)

(6.2)

(6.3)
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11. The system to a second approximation

Approximate expressions are:

11
0 -2u) :  0,u]= (1

to Boundary Layer Theory

11
u)[0.  12u) +- 4u

'67,-.

215

(6.4)
1

[00(1 ;0
-u

Differential equations are:




1% 34 32




- 00 01




(6.5)
1% 20 16




v (400+6 (91) - w:- 0,




The system to a third approximation

Approximate expressions are:

1
[00(19292

•  9
2

0,)

0

(..)

`-'2)

(2u-3u2)-  —19 (-u  +30)]

022

225234191

uu2):0,2(2u-3u2)+0.--12.(-u 30)1

(6.6)

(6,7)




1 u

1
- (1  -u)[19 u9 142)4-1

0	 Oo220,


Differential equations are:

1%1677
00-; 2  0,40 • 0,2

	

4 I%(1)67 028 013

1

	

-I V 12312

4( 83  0 52 + 31

	

‘-'2 I V 630 16

2)

	

00011 + 02

	

_ 3951 .+ 12

0991215

00 I0162

The system to a fourth approximation

Approximate expressions are:

0 =  1
1-u

[0,• 1 (3 ---22u+ 48u2- 320)-1- 0, • 3(3u- 100+80) F
3

1
-16u2-16/43)÷  0, •  -3-(u-6u=  + 8u3)]

1 1 1
= (1  -u)[-0 • (3-22u+ 48u2-320+

0  ,  3

1 16 1
+ k • 3-(3u--1ou2.+8u3);- -6; .4(-3u ÷16u2-160)+-

+ -1- • -16(u-6u2+80)]
03 3

(6.8)
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Differential equations are :

é 0 + (970H-12901-310,H  303)

1  3424 1 1 1
= 940 • — 	 • I 280 •  96 41—

00 3 0, 02 t_/3

V (137

61+ V 72 •

62 + —

	

V2

—

7543
0„ I8 01 +  8 •

1331244
•__--_ _ +

0,—

1
0,

(72

1
,

 •
0

23
72- • 03) —

1391

16
-- •

1

1

6;

(6.9)
6

(7,,—

532

0„9

n
— •, I
22

1

(7688

3

+ —t73 =- =
2

,)

1
52A+

3
+

03,

,,,.;
+Ut 3

i ( 177 LI, 195 in




149 n




V 8 81 ':". 28




+ 8




443 1 10601




11




2 0, 3
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7. EXACT SOLUTIONS. INITIAL CONDITIONS FOR THE APPROXIMATING


SYSTEMS OF EQUATIONS

If
1

= cArrn= c (m+1)  m+1 (7.1)

then
1

Vin+1.
or substituting ,8 =

2m

tn+1

13
(7.2)

V

In this case the approximating systems also possess an exact solution
of the form

in which  A„  are found as the solutions of the corresponding algebraic
systems, as for example, in the first approximation

4
A0(1+3/3) =

Ao
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in the second approximation

68 64
(l  9)/10-1-7[3111---

A0 A,

40 32
A, A,

and similarly for systems of hitiher approximations. The quantities A,

are connected with the function y by an exact differential equation (4.9).
In particular

1  00)
A, 2

This permits an appraisal of the accuracy of the approximate systems.
In the table below, such a comparison is set out




1st

Approx.

2nd
Approx.

3rd

Approx.

4th

Approx.

Exact

solution

—0 -19 0.32787 separation at0 -14253 0 -085140 -06060
—0-15 0 -37081 —0 -050.18072 0.14999 0.15299
— -10 0 -51833 0 -23246 0 -22255 0 -22576
+ 0 -00 0.50000 0.316492 0 -32968 0 -33191 0 -33206
+ 0.50 0 -79057 0 -65628 0 -65416 0 .65586 0 -65597
+1 -00 1 -00000 0 -87247 0 .87056 0 -87164 0.87157
+I -50 1 .17260 1 -04538 1 .04386 1 -04470 1.04456
+2-00 1 -32288 1-19371 1 -19252 1 -19321 1.19304




1





For an arbitrary velocity law, solutions of the type (7.3) give the initial
values for the quantities  0„,  which permits omission of the singular
point ; = 0 and furthermore the application of any methods of numerical
integration of the systems of ordinary differential equations.

After determining the quantities  0,  the boundary layer characteristics
cf., 6*, 6**  are determined in a simple manner

	

2r0 21 v
cf  =

	

ev2  00

In our equations,  0  and ; are dimensional quantities. If instead they
were non-dimensional functions, taking a certain velocity V, for the
characteristic velocity and a certain length  1  for the characteristic length
(for example, the velocity in laminar flow and the chord of a streamline
profile), then the non-dimensional functions take the following form

— , — 

I Vol Vol

413A0-F (1-i- 6/3)A1 —

(7.4)
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Ev idently all the systems of equations (6.3, ..., 6.9) will possess the same
form for the variables 0 and For non-dimensional quantities, the local
frictional coefficient cf takes the following form

1 2 1_
Cf= 2 V —

Vo  0 0 00. I/ Re

Expressions for (5* and (5** will depend on the number of approximations.
The general expressions

(5*
= 1

0(1 —u)du; b**
1

1-014(1—ii)dd;
— _

1/ Re Vi I Re V .1
0 (7.6)

1• 0

uz,e(i-e)

N=2 • ••
N=3 000

N=4

.\! •
0.5 I•0

are represented clearly, if instead of 0, the approximate expressions (6.2),
(6.4), (6.6) or (6.8) are substituted:

(5*V 1 1 1 1 1
	 • 1/ Re

(7.5)

—Icto

0.5

0

•

•
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6" 1/ 1 1 1 1 1 5

/ * '

1
-90 ( 70„ 130 3)

for the 1st, 2nd, 3rd and 4th approximations, respectively.
In conclusion I will add an example of the calculation for the case when

V  ci

or in geometrical co-ordinates

cv cx
V = c(5h eh3 


2 i

The velocity distribution which this formula gives recalls the usual
formula for velocity distribution along the profile for large angles of
incidence.

On the graph opposite is a comparison of curves for the 2nd, 3rd and
4th approximations. The graph and the table above permit an assess-
ment of the accuracy and rapidity of convergence of the method.




